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Attenuation of Oscillatory Pressures in Instrument Lines1

By Arthur S. Iberall

A theoretical investigation has been made of the attenuation and lag of an oscillatory
pressure variation applied to one end of a tube, when the other end is connected to a pressure-
sensitive element.

An elementary theory based on incompressible viscous-fluid flow is first developed.
The elementary solution is then modified to take into account compressibility; finite pressure
amplitudes; appreciable fluid acceleration; and finite length of tubing (end effects). Account
is taken of heat transfer into the tube.

The complete theory is derived in an appendix. The results are summarized in eight
graphs in a form convenient for use in computing the lag and attenuation of a sinusoidal
oscillation in a transmission tube.

1. Introduction
In many industrial processes, it is necessary to

know or to utilize the pressure at one or more
points in a fluid conduit. It is not always possible
to connect an instrument directly into the conduit
at those points. Instead, recourse must be had to
remote indication or control. In the case that a
fluid is used for transmitting the pressure, it is
often of interest to the designer or user of such
systems to know their response to variations in
pressure. At the present time, the only solution
easily available to the engineer is generally based
on an elementary theory that considers the system
as equivalent to an R-C electrical network. (See,
for example, NACA Technical Note 593, Pressure
drop in tubing in aircraft instrument installations,
by W. A. Wildhack.) The main defect of the
theory is that it does not provide criteria for the
limits of its applicability.

In the present paper, a relatively complete treat-
ment is given for the transmission of oscillatory
pressures in tubing. Primary consideration is
given to simplifying the design of high-quality
transmission systems for relatively low frequencies.

The elementary solution is derived and then
extended to apply for oscillatory pressures that are
an appreciable fraction of the absolute mean
pressure, for appreciable frequencies of oscillation,
and for tubing short enough to require end cor-

1 This work was supported by the Office of Naval Research under a project
on "Basic Instrumentation for Scientific Research."
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rections. The effect of heat transfer in modifying
the oscillatory response of the tube is also dis-
cussed.

The chief utility of knowing these corrections is
that it permits the designer to choose the size of
tubing for specific applications with greater con-
fidence than can otherwise be done.

In the next section, the elementary theory of
transmission lags is developed, and the corrections
are discussed. The complete theory is presented
in graphical form for the convenience of the de-
signer. A number of examples of the use of the
design charts are also given. This section is then
followed by a mathematical appendix in which
the more exact results are derived. All math-
ematical symbols used in this paper are defined in
section II and also when they are first used.

II. list of Mathematical Symbols

.4=tube area.
C= velocity of sound.
Z)=inside diameter of.tube.
E= elastic modulus of tube.
F= correction functions.
K= thermal conductivity of fluid.
L=tube length.

M=mass flow.
iV=dimensionless parameter of fluid regime.
Q=volumetric flow.
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R=& volume ratio.
Re=Reynolds number.
T= absolute temperature.
V=instrument volume.
b=compressibility factor for liquid.
c=any arbitrary constant.

cp=specific heat of fluid.
/ = a n y arbitrary function.
g=& Bessel function argument.
h=a Bessel function argument.
k=compressibility of a liquid.
1=entrance length.

m=exponent of "polytropic" expansion in in-
strument volume.

n=exponent of "polytropic" expansion in tube.
p=pressure.
s=tube wall thickness.

axial velocity.
axial distance along tube.
a dimensioaless axial distance variable.
dimensionless parameter of fluid regime.
ratio of specific heats.
phase angle.
density ratio.
time constant.
fluid viscosity.
kinematic viscosity.
fractional pressure excess.
fluid density.
Prandtl number.
velocity potential.
attenuation factor.

ty=attenuation parameter,
w=angular frequency.

III. Elementary Theory

Figure 1 is a schematic drawing of the system
that will be discussed throughout the paper. A
tube transmits fluid pressure from a conduit to
a pressure-sensitive instrument. The conduit
applies an oscillatory (sinusoidal) pressure to the
entrance of the transmission tube. The tube,
which transmits the pressure, is characterized by
a constant cross-sectional area and its length.
The pressure-sensitive instrument, which receives
the pressure, is characterized by its enclosed
volume. It is assumed that if the walls enclosing
the instrument volume are flexible (either elastic
or piston-like), the enclosed volume can be re-

placed by a larger equivalent rigid volume that
will store the same mass of fluid per unit pressure
change. It is further assumed that the pressure-
sensitive instrument will be so chosen that its
indication is independent of the frequency of
expected pressure oscillations.

In deriving the elementary theory, it is assumed
that Poiseuille's law of viscous resistance holds at
each point in the tube; that the fluid is incom-
pressible in the tube; that the sinusoidal pressure
oscillations at the beginning of the tube are of
small amplitude compared to the mean absolute
pressure; and that, if the fluid is a gas, it expands
and contracts isothermally in the instrument
volume.

r

FIGURE 1. Schematic diagram of a fluid transmission
system (1-conduit, ^-transmission tube, S-pressure instru-
ment) .

p=pQ+Ap cos cot.

The same assumptions applied to an incom-
pressible fluid (e. g., a liquid) lead to the conclusion
that there is no loss in amplitude or lag in a liquid-
filled system as a liquid would not expand or
contract in the instrument volume.

We may write

for Poiseuille's law, and

bx

(1)

(2)

for the equation of continuity. Here
p=instantaneous pressure at any point in

the tube
x=distance along the tube measured from

its entrance
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/xo=mean fluid viscosity
D=tube diameter
Q=volumetric flow at any point in the tube
p—instantaneous density at any point in the

tube
M=mass flow at any point in the tube
A=cross-sectional area of the tube

so that eq 3, 4, and 5 become, respectively,

We infer from the equation of continuity and
the assumption that the fluid is incompressible in
the tube (i. e., bp/bt=O) that the mass flow, and
therefore the volumetric flow, does not vary along
the tube, but at most varies only with time (the
fluid motion is piston-like). -

By differentiating eq 1, we then obtain

v^=o
bx2

along the tube.
Our boundary conditions are that at x=0

(3)

(4)

a sinusoidal pressure variation about the mean
pressure, and that at x=L

(5)
bp__128

The first line of eq 5 expresses the rate at which
a compressible fluid entering a rigid volume builds
up pressure, whereas the second line of eq 5 states
that the flow into the volume is limited by the
pressure gradient at the end of the tube. Here

2?0=mean pressure at the entrance
Ap=amplitude of the pressure oscillation at

the conduit
V= instrument volume
co=angular frequency of the pressure oscil-

lation
L=length of the tube.

It is convenient to introduce a new variable £,
the fractional pressure excess, defined as

bx2

at x—0

and at x=L,

(7)

(8)

where

| = _ _ M p V d |
bx 7T pQ D* bt

Lbt

128/io

AL

(9)

(10)

Here

£ = fractional pressure excess
£o = amplitude of the fractional pressure ex-

cess at the origin (=Ap/pQ)
X0=a time constant of the system.

It is of further convenience to separate the
pressure excess into a part that varies with x and
one that varies with t.

Let

*=€>' , (11)

where £ is the maximum amplitude of the pressure
excess at any point of the tube.

Our equations then become

at x=0,

and at x=L

* = & > ,

(12)

(13)

(6)
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_
dx~ L

(14)
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The solution of eq 12, which satisfies eq 13 and
14, is

(15)

The ratio of the amplitude of the pressure excess
at the end of the tube to that at the beginning of
the tube is then given by

1

IV. Discussion of Corrections

The assumptions made in the elementary theory
are restrictive, and in the appendix we shall modify
them, one at a time, until finally we arrive at a
complete solution that accurately takes into ac-
count all first-order phenomena, and partially
takes into account second-order phenomena.
Complete results are presented in convenient
graphical form in figures 2 to 9.

where

Here

(16)

1.0

(17) .8

L=maximum amplitude of the pressure ^
excess at the instrument volume

Xo—an attenuation factor.

The real part of eq 16 is the attenuation in
amplitude of the pressure excess, whereas the
imaginary part is the phase lag, or
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FIGURE 2. Amplitude ratio of the fundamental \IOL/£O\O in
a volume terminated tube as a function of a parameter
proportional to frequency (x ro) for various ratios of instru-
ment volume to tube volume (x/o/xro) with large damping

(18)

100

80

where 80 is the lagging phase angle.
We will regard eq 18 as the elementary solution

of our problem. It indicates that a transmission
system is characterized by a time constant Xo,
which can be computed from a knowledge of the c/>
dimensions of the tube, the internal volume of £ 60

the end device, and the average conditions of the S
gas in the tube; and an attenuation factor xo, for j? 40
each angular frequency, from which one can t2
compute the attenuation and phase lag in a tube. 20
The tube dimensions and the instrument volume
furnish the analog to the resistance and capacitance °
of an electrical network.

In principle, although difficult in practice, from
a knowledge of the response to a sine wave, one
can obtain the response to square waves, step
function, etc., by Fourier analysis.
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FIGURE 3. Phase lag of the fundamental (5o)o in a volume
terminated tube as a function of a parameter proportional
to frequency (x ro) for various ratios of instrument volume
to tube volume (xio/x TO) with large damping («<1).
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FIGURE 4. Amplitude ratio of the fundamental |£OL/£O| *W.
a volume terminated tube as a function of a parameter
proportional to frequency (x ro) for various ratios of instru-
ment volume to tube volume (x/o/Xro) o,nd for two values of
specific heat ratio (7) with intermediate damping (z=
6.25).

, 7=1; , 7=2.

FIGURE 5. Phase lag of the fundamental (do) in a volume
terminated tube as a function of a parameter proportional
to frequency (XTO) for various ratios of instrument volume
to tube volume (xio/Xro) o,nd for two values of specific
heat ratio (y) with intermediate damping (2=6.25).

,7=1; ,7=2.

FIGURE 6. Amplitude ratio of the fundamental |IOL/£O| in
a volume terminated tube as a function of a parameter
proportional to frequency (wL/Q for various ratios of
instrument volume to tube volume (xvx T) with little damping
(z>100).
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FIGURE 7. Phase lag of the fundamental (do) in a volume
terminated tube as a function of a parameter proportional
to frequency (uL/C) for various ratios of instrument
volume to tube volume (XIIXT) indicating the difference
between no damping ([7Xro/16]** = O) and small damping
([YXro/16]^ = l) for two values of specific heat ratio (7)
with small damping (z> 100).
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FIGURE 8. Relative amplitude of the double harmonic dis-
tortion (|£IL/£O|O/£O) in a volume terminated tube as a func-
tion of a parameter proportional to frequency (XTO) for
various ratios of instrument volume to tube volume (x/o/Xro)
with large damping ( z < l ) .
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FIGUBE 9. Phase lead (as measured on the fundamental time
scale) of the double harmonic distortion (5i)0 in a volume
terminated tube as a function of a parameter proportional
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The factors that must be taken into account
are:

1. Compressible flow in the tube. The effect of
fluid compressibility is to introduce a time con-
stant and corresponding attenuation factor (\T, XT)
depending on the tube volume in addition to the
ones depending on the instrument volume. (The
time constant and attenuation factor depending
on the instrument volume will be referred to as
Xj and xi henceforth instead of Xo and xo)« In
terms of the electrical analog, the tube volume
represents a distributed capacitance in addition
to the equivalent capacitance of the instrument
volume.

2. Finite pressure excess. The effect of the ap-
plication of a finite pressure excess to a compress-
ible fluid in a transmission tube is to introduce
harmonic distortion and to modify the mean pres-
sure. However, the attenuation of the funda-
mental is essentially independent of the magnitude
of the pressure excess. The percentage of distor-
tion is approximately proportional to the applied
pressure excess.

3. Fluid acceleration. The effect of fluid inertia
is to modify the time constants of the system.
Both the attenuation of the fundamental and the
magnitude of harmonic distortion are affected. A
dimensionless parameter z analagous to the "Q"
of an electrical system characterizes the fluid
regime and determines whether fluid inertia may
or may not be neglected.

When fluid inertia is negligible, a transmission

tube acts like a highly damped system; when fluid
inertia is large a transmission tube acts like an
undamped system, and elementary acoustic theory
is applicable.

4. Finite length of tubing. The effect of fluid
acceleration at the ends of the tube results in
further distortion of wave form, which must be
taken into account in short tubes.

5. Heat conduction. If there were no heat trans-
fer from outside the tube to inside, the oscillatory
processes would take place adiabatically; if there
were perfect heat transfer into and through the
tube, the processes would take place isothermally.
The effect of finite heat conduction is to make the
real process occur in between these extremes,
although in a rather complicated fashion. At low
frequencies the process may be regarded as
isothermal.

Although an exact result is given in the appen-
dix, it is advantageous to utilize the thermody-
namic equation of condition, discussed in the
following section, for elucidating the problem of
attenuation in tubing.

V. Thermodynamic Equation of Condition

In the case of an oscillatory variation of fluid
flow, the equation relating the thermodynamic
parameters of the fluid lie between the adiabatic
and the isothermal equations of condition. For
high frequencies, as in sound waves, it is well
known that the adiabatic equation holds. How-
ever, for viscously damped motion, the adiabatic
relation is not, in general, attained.

For a gas, we assume and justify in the appendix
the processes can be described as "polytropic",
that is, characterized by a constant exponent n}

in the expression
p=cpn)

> (19)

with

where
n=exponent of the "polytropic" expansion in

the tube
y=ratio of specific heats
77=density ratio (p/p0)

pQ=average density in the tube.
c is used to indicate any constant.

The viscosity of gases is independent of the
pressure, and, as an approximation, proportional to
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the absolute temperature. (The more rigorous
approximation is that the viscosity is proportional
to [T]1/2/[l+c/T] but over a small range this can
be approximated by the temperature to a power
close to one. For example, for air at room tempera-
ture, a power of 0.8 fits experimental data quite
well. The difference from unity is unimportant
for our purpose.)

Therefore,

(20)

Mo

follows from the gas laws and eq 19. Here JJL is the
instantaneous fluid viscosity, and Tis the absolute
temperature.

Equations 19 and 20 thus express the variation
of viscosity, density, and pressure in a polytropic
process in a gas. At low frequencies, the poly-
tropic exponent may be taken as equal to unity.

For liquids, we assume that the equation of
condition in a polytropic process is given by

where
P=Po+cpn, (21)

For liquids, however, y lies so close to unity
that we may satisfactorily assume n—1.

Equation 21 can then be written in the form

(22)

where b—a compressibility factor (=kopo)
ko=liquid compressibility at average condi-

tions in the tube.
The variation in viscosity of a liquid over a small

range of temperature can be neglected, so tha t in a
polytropic process

M=Mo. (23)

Actually the implication in eq 22 and 23 is tha t
in a liquid-filled transmission line, the effect of
conditions appreciably different from isothermal
is negligible.

I t is also necessary to take into account heat
exchange at the pressure element.

For an isothermal process with a gas in the
instrument volume, we previously assumed tha t

(5)

represents the influx of fluid. If, instead, a
polytropic process in the instrument is assumed,
characterized by an exponent, m (the heat ex-
change may differ in the tube and instrument
volume so that m is not necessarily equal to n),
then eq. 5 should be modified to

mp bt
(24)

^ m p bt

in the case of gases; or to

<2=^%> (25)
^ p0 bt v '

for liquids. '
If the fluid is regarded as a spring, the exponent

of the polytropic process for a gas, or the com-
pressibility of a liquid may be viewed as quanti-
ties that make the fluid spring stiffer in the case
of gases, or almost infinitely stiff in the case of
liquids. It-is shown in the appendix that these
polytropic exponents modify the time constants of
the tube and volume.
VI. General Procedure, with Examples,

for Computing Transmitted Pressure

The computation of the attenuation and phase
lag at one end of a transmission tube of a sinusoidal
pressure variation imposed at the other end can be
carried out with the aid of figures 2 to 9, These
figures are based upon the theory largely developed
in the appendix. The computations are made
primarily for the attenuation at the fundamental
frequency. An estimate of the distortion arising
from finite input amplitudes with high damping
is made in the appendix. The computation for
the first harmonic in the distorted output can be
made with the aid of figures 8 and 9. kn outline
of procedure for making computations follows.

1. Compute

D2 o)
z=—A 1

4 vQ

(26)

a dimensionless parameter of the fluid regime that
characterizes the amount of damping present.
When this parameter is less than 1 (large damp-
ing), use figures 2 and 3; when greater than 100
(small damping), use figures 6 and 7. For inter-
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mediate values of this parameter, use figures 4 and
5 as an aid to interpolation.

2. Compute the attenuation factors

XTO=

XT0 rn \AL/

for a gas/or

1+- p0

1 I)
s

'o V
AL o-Pa JL

Po

(27)

(28)

')' (29)

(30)

for a liquid. These quantities, XTO and xio, are
factors based on the tube volume arid instrument
volume, respectively. The zero subscript means
that they are values for the case of large damping.

3. Compute the input pressure excess

(31)

4a. For values of z less than 1, enter figure 2
with XTO and XIO/XTO to find the amplitude ratio
|<Wfo|o and enter figure 3 to find the lagging phase
angle (8o)0.

4b. The output pressure excess is then com-
puted from

o—£o (32)

5a. For values of z greater than 100, compute

(33)

(34)*L (
XT \XTO

For liquids, assume 7 = 1 .
The quantities xi and XT are the attenuation

factors for the case of low damping. "With low
damping, it is convenient to use the dimensionless
parameter coL/C, which is proportional to fre-
quency, as the independent variable.

5b. Enter figure 6 with ccL/C and XIIXT to find
the amplitude ratio \\OLI£Q\ and enter figure 7 to
find the lagging phase angle do. It is necessary
to estimate the phase angle by interpolation. For
very small values of xro compared to 1, the lagging
phase angle is zero up to the first resonance. In
figure 7, curves have been presented to indicate

the phase angle for [7Xro/16]1/2=O and [yxTo/16]1/2=l
One may linearly interpolate between these curves
on the basis of [7Xro/16]1/2 for values lying between
0 and 1.

6a. For values of z lying between 1 and 100,
one may interpolate between the values of ampli-
tude ratio and lagging phase angle obtained in
step 4a and those obtained in step 5b by the use
of figures 4 and 5. Enter figures 4 and 5 with xro
and XIO/XTO to find the amplitude ratio |£oz,/fol and
lagging phase angle 80. These are the values for
0=6.25. In order to interpolate, plot a logarithmic
graph with z as abscissa and the amplitude ratio
or phase angle as ordinate. Plot the values from
step 4a at 2=1, from step 6a at 2=6.25, and from
step 5b at 2=100, draw a curve through these
three points, and interpolate on this curve for the
intermediate value of z.

1. Computation of Double Frequency Distortion

1. This computation represents only an esti-
mate of the double frequency distortion and is
strictly valid only for values of 2 less than 1.

Compute XTO and XIO/XTO- Enter figures 8 and
9 to obtain the relative amplitude ratio |£u,/£o|o/£o
and leading phase angle ($i)0 for the double fre-
quency wave. The leading phase angle is meas-
ured on the time scale of the fundamental, where
both the fundamental and double frequency waves
are cosine terms.

2. Compute the pressure excess of the double
frequency | £1L \ 0 from

(35)

The various quantities in the above section are
defined below:

/xo=mean fluid viscosity.
^0=mean kinematic viscosity.
2>o=mean fluid pressure.
pa~ambient pressure external to the tube.

Ap=amplitude of the applied sinusoidal pressure.
£0— applied fractional pressure excess.

|Oi=pressure excess of the fundamental at the
instrument volume.

IIL=pressure excess of the double frequency at
the instrument volume.

50=lagging phase angle of the fundamental at
the instrument volume.

5i=leading phase angle of the double frequency
at the instrument volume.
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jto=meaii fluid compressibility.
V = equivalent rigid internal volume of the

instrument.
^4=internal cross section of the tube.
J9=internal diameter of the tube.
$=wall thickness of the tube (assumed small

compared to the diameter).
E= elastic modulus of the tube material.
Z=length of the tube.
C= velocity of sound in the fluid.
Y=ratio of specific heats of the fluid (assumed

to be one for liquids).
m=coefficient of the poly tropic process in the

instrument volume. (In lieu of other
information, it may be assumed to be
one.)

2=dimensionless parameter characterizing the
fluid regime.

w= angular frequency applied.
XT= attenuation factor based on the tube

volume.
* Xi= attenuation factor based on the instrument

volume.
Subscript T refers to parameters based on tube

volume; subscript / refers to parameters
based on end volume; 0 or 1 following a
T or I denotes the fundamental or first
harmonic; an end subscript of 0 denotes a
value for the case of large damping.

The attenuation of the fundamental may be
validly computed from the formulas developed in
this paper when

CD<1

C2< 1

(36)

The second harmonic distortion, which was only
estimated - approximately, may be validly com-
puted from the formulas developed when

z= (37)

and when the applied pressure amplitude is suffi-
ciently small at the applied frequency to permit
laminar flow. 3. Compute the mean pressure in
the instrument volume, which is larger than the
mean pressure at the tube entrance by

2. Examples of Computations

The calculation of attenuation by the general
procedure outlined above will be illustrated by a
number of examples.

(a) What is the longest length of K6-in.-inside-
diameter tubing that can be used to transmit air
pressure to a Bourdon pressure gage (equivalent
internal volume assumed negligible) up to a fre-
quency of }{ c/s with a loss in amplitude not
greater than 25 percent? TV hat will be the double
frequency distortion? For air assume /z0=2X10~4

poise, J>0=1/6 stokes, m = l , 7=1.4, p0—106

dynes/cm2 (atmospheric pressure), angular fre-
quency C0=7T.

Using eq 26, 2=1.1 (computed in consistent
units). This value is sufficiently close to unity to
permit the use of figures 2 and 3. Enter figure 2
with |W£o|o=O.75 and XIO/XTO=O, since the in-
strument volume is negligible, to find xro=2.1.
Compute L in eq 27 to be 160 feet.

Entering figure 3 with XTO=2.1, to find that the
maximum phase lag will be 53 degrees.

Entering figure 8 to find that the relative ampli-
tude of the double frequency |£ii,/£o|o/£o=O.35.
For initial pressure excesses of 0.1, 0.3, and 1,
respectively, the double frequency amplitude, rela-
tive to the input amplitude, will be 3}£, 10}£, and
35 percent, while the mean pressure will increase
0.0010, 0.010, and 0.11 of an atmosphere, respec-
tively.

(b) What lengths of O.l-in.-inside-diameter tub-
ing (nominally Ke-m.-outside-diameter tubing) can
be used for quality transmission of air pressure for
frequencies up to 1, 10, 100, 1,000 c/s into pressure
instruments with equivalent rigid volumes of 0.1
and 1 in.3?

We will define quality transmission as that in
which there is no more than ± 5-percent change
in fundamental amplitude or more than ±30°
phase shift (whichever is more stringent).

Assume that / X Q ^ X I O " 4 poise, v0—1/6 stokes,
m = l , 7=1.4, D=0.1 in., .4=0.0079 in.2, ^0=106

dynes/cm2, po=O.OO12 g/cm3.
We will calculate for each frequency separately.

b(l). f=lcjs:
Using eq 26, z=0.61; therefore, use figures 2

and 3.
Assume AL= oo ? therefore, by eq 28, Xio/xro=:O.
Enter figure 2 for l(oi/£o|o=0.95 to find xro=

0.80.
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Enter figure 3 for (5o)0=30° to find XTO=1.1;
use 0.80 since it is more stringent.

Calculate L from eq 27 to be 450 in.
Calculate AL to be 3.5 in.3

Compute xio/xrofrom eq 28 to be 0.029 for 1^=0.1
in.3; 0.29 for V=l in.3

On figure 2, XTO is modified negligibly for V=
0.1 in.3

Therefore, L=450 in.=37 ft for F=0.1 in.3

Reenter figure 2 for IW£o|o=O.95, XIO!XTO=
0.29 tofindxro=0.5

Calculate L to be 350 in.=29 ft for V=l in.3

b (2). f =1,000 c/s:
Using eq 26, 0=610; therefore, use figures 6

and 7.
Assume x//xr=49 (the line volume will probably

be small).
Enter figure 6 for IW£0| = 1.05 to find a)L/C=

0.031.
Calculate L from eq 33, 26, and 27 to be 0.066 in.
Calculate AL to be 0.00052 in.3

Using eq 34, it is seen that XIO/XTO is greater than
assumed, so that coL/C, and therefore Lf is less
than the previous estimate. One may note that
the estimated length will be so small that the
theory essentially predicts that no transmission
tubing at all may be used. In fact, the acoustic
impedance of the entrance orifice into the pressure
instrument or the mechanical impedance of the
pressure instrument itself will probably govern the
response at this high frequency.

b(3). f=10 c/s:
Using eq 26, 2=6.1; therefore, use figures 4

and 5.
Assume AL— °°, therefore, x/o/xro=O.
Enter figure 4 with |£oz,/£o| = 1.05 and 7=1.4 to

find xro=O.12.
Compute L from eq 27 to be 58 in.
Compute AL to be 0.45 in.3.
Compute XIO/XTO from eq 28 to be 0.22 for

F=0.1 in.3, =2.2 for V=l in.3

In figure 4, xro is modified to about 0.07 for
y=0 .1 in.8

Therefore, L is reduced to about 4 ft for V=0.1
in.3

Enter figure 4 for |£OL/£0| = 1.05, and x/o/xro=2
to find xro=O.O18.

Compute L to be 22 in. for V = l in.8

Compute AL to be 0.17 in.3

Compute xro/xro=6.
Enter figure 4 to find xro=O.OO7.

Compute L to be 14 in.
Compute AL to be 0.11 in.3

Compute xWxro=9.
Enter figure 4 to find xro=O.OO4.
Compute I to be 11 in.
Compute AL to be 0.09 in.3

Compute W x r o = l l .
In figure 4, xro is modified negligibly.
Therefore L=about 1 ft for V=l in.8

To check the phase angle, enter figure 5 with
o^H, and xro=O.OO5, to find 4°.

b(4).f=100 c/s.
2=61 (interpolation is necessary).

First estimate from figure 6 and 7.
Assume x//xr=9.
Enter figure 6 to find a>L/C= 0.068
As in b (2), compute L to be 1.5 in.
Compute AL to be 0.011 in.
Compute x//xr=9.1 for F=0.1 in.3; =91 for V=l
in.3

By figure 6, coi/C is negligibly modified for
F=0.1 in.3;
Therefore i = 1 . 5 in. for V=0A in.3 is our first
estimate.
For V=l in.3, we find again that an extremely
small tube is predicted, so that the impedance of
the entrance orifice will probably govern.
For V=0A in.3 and L= 1.5 in., estimate [YXro/16]1/2

to be .01.
From figure 7 we find that the phase lag is
negligible.
Compute xro=O.OOO9, from (8.2) for CO=200TT.
Enter figure 4 for x/o/xro=9 to find |Wfo| = l.OO.
Interpolating between |£oz,/£o| = l at z=6.25 and
JW£o| = l.O5 at 2=100 for 2=61, we find \\OL/U
is negligibly affected.
Therefore i = 1 . 5 in. for F=0.1 in.3

VII. Appendix. Development of the Theory
1. Introduction

The difficulties of deriving, elucidating, and
comprehending the mathematical results of trans-
mission in tubing from a rigorous point of view,
have led the author to treat the problem in a series
of somewhat artificial steps. Thus in the previ-
ous sections, the elementary solution was pre-
sented, to give the reader a general view of the
problem, even though many of the details of the
solution were slurred over. Here steps are taken,
one at a time, to remove the restrictive assump-
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tions made in deriving the elementary solution.
Nevertheless, a complete solution to the problem
is not obtained. All first-order effects are treated
to the point where the solution is correct to
frequencies well into the sonic region. However,
only an elementary treatment is given for the
second-order distortion effects. It is felt that
when these second-order effects become appreci-
able, the solution presented is of no quantitative
utility to the instrument system designer or user,
but is only indicative as to order of magnitude.

2. Theory Corrected for Compressibility

(Infinitesimal Oscillatory Pressures)

In this approximation, the assumptions are
Poiseuille's law of viscous resistance; small frac-
tional pressure excess; and that density, pressure,
and viscosity are related by the equation of
condition.

For gases one can then write

1 2 8

or
Op l Z o ft

Lr

(i)

for Poiseuille's law, and

bM _ . dp
(2)

for the equation of continuity.
One can eliminate the mass flow M, to obtain

32 dp (38)

By virtue of the assumption of small pressure
excess, and the equations of condition (eq 19 and
20), we can disregard the differentiation of P/M in
eq. 38, and replace it by its mean value. Equa-
tion 38 then becomes

or
bx2~np0D

2

d2£_ 32Mo

(39)

Utilizing the previous definition of Xo (eq 10),
eq 39 becomes

njL2c)t
or

where
L2 bt

(40)

(41)

The significance of the new time constant Xro

can be understood by inspection of the definition
of Xo (eq 10). One may note that Xro is a time
constant based on the tube volume, AL, instead
of the instrument volume, V; and that it gives
weight to the exponent of the polytropic process
in the tube. It is thus related to the equivalent
distributed electrical capacitance of the tube.
The weighting by the exponent, n, arises from the
fact that it represents the additional " stiff ness"
of the air column in the tube as a polytropic
spring.

If, as in the elementary solution, we separate
our pressure variable into a space and time part

eq 40 becomes

or

where
XTO —

(ii)

(42)

(43)

The quantity xro is an attenuation factor based
on the tube volume.

Equation 42 may be compared with the corre-
sponding equation of the elementary solution, eq 12.
It may be noted that it is necessary that xro be
small in order for the elementary solution to be
valid.

Referring now to eq 42, the boundary conditions
are
at x=0

and at x=L

dx' m L'

(13)

(44)

(see eq 5, 9, and 24).
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We may redefine a time constant and attenua-
tion factor for the instrument volume, which takes
into account the polytropic process as

which for small \f/T0 becomes

L 1 1
To (52)

(45)

X/o=>

At x=h, eq 44 therefore becomes

dl XT

dx~
VO (46)

The solution to eq 42, which satisfies boundary
conditions (eq 13 and 46) is

where
(47)

(48)

The new ^'s, which shall be referred to as
attenuation parameters, are

fao an attenuation parameter depending on
tube volume;

ipI0 an attenuation parameter depending on the
instrument volume.

The ratio of the fractional pressure excess at
the end of the tube \L to that at the beginning
of the tube £0 is then

£o
cosh sinh

(49)

It is instructive to examine the limiting values
of this equation. For small \l/T0, the attenuation
approaches

(50)

the same result as in the elementary theory
(see eq 16).

For small values of if/IOj the attenuation ap-
proaches

£o c o s h yj/TQ
(51)

The form of eq 50 and 52 is similar. In fact,
for small values of both ypro and \I/IO it is possible
to define a composite attenuation factor x by the
relation

X—

or (53)

such that the real magnitude of the attenuation
is approximately

(18)

which preserves the form of the elementary
solution.

Equation 18 can be interpreted as meaning that
the " proper" time constant of the system can be
obtained by adding to the n weighted volume of
the instrument, l/[6]^ of the m weighted volume
of the tube, and substituting this in the elementary
formula for the time constant of the system.

In principle, for larger values of ^yo or \f/I0, a
coupling coefficient (of approximately unity) could
be introduced as an addition to the coefficient
1/[6]1/2, which would vary somewhat with the rela-
tive magnitude of ^ ro and ^/0, to permit strict
preservation of the elementary form. It is, how-
ever, simpler to compute attenuation from eq 49.

For liquids, we start from eq 38.

b \ j D2Z>t' (38)

As before, with the aid of eq 22 and 23, we
obtain the result

or

dx2 p0D
2 bt

yf_Xrob|
bx2 ~"U U

d^__Xror

dx2"' L2 ^

(54)
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where

4L
55)

The boundary condition at x=0 is

and at x=L

or

. I

(13)

(56)

where

(see eq 5, 9, and 25).

0=X06 }
(57)

The form of eq 54 and 56 is identical with eq 42
and 46, with the difference that the coefficient in
the X's is the very small compressibility factor
rather than the reciprocal of the exponent of the
poly tropic process. Physically, this simply means
that the liquid is a spring of almost infinite stiff-
ness compared to the gas.

Because of the formal identity of the equations,
the previous solution holds in toto, with the modi-
fied value of \ro- The following interpretation is
now possible for the elementary result that there
is no attenuation with liquids. The Xo time con-
stant of elementary theory did not take into
account the effect of liquid compressibility, which
is small. If, however, Xo is weighted by b (i. e.,
X=6X0) then the same attenuation curve holds
for both liquids and gases, but with liquids we
operate on the very beginning portion of the atten-
uation curve for gases.

There is one complication that should be con-
sidered in liquid tube attenuation. Because of the
small compressibility of liquids, it is often possible
that the flexibility of the tube gives rise to a com-
pressibility comparable to that of the liquid. The
simplest way of taking into account the flexibility
of the tube is to define and replace the compressi-
bility factor of the liquid by an effective value
F and k.

(58)

where
po=me&n liquid pressure;
pa=ambient external pressure (usually atmos-

pheric) ;
E= elastic modulus of the tube material;
s=wall thickness of the tube.

In the derivation of eq 58, the assumption has
been made that the thickness of the tube wall is
small compared to the tube diameter.

3. Theory Corrected for Finite Oscillatory
Pressures

In this section, we will determine the effect of
finite fractional pressure excess on the attenua-
tion in a tube. We assume only that the
Poiseuille velocity distribution holds. We will
show that the effect of finite pressure excesses is
to excite higher harmonics, resulting in a distor-
tion of wave form, and to raise the mean pressure
along the tube. The higher harmonics are excited
because of the nonlinearity of the equations.

The method of solution selected will be that of
expansion in harmonic series in which the excita-
tion of sum frequencies only are considered and
the difference frequencies are neglected, so that
the solutions obtained are only valid for the lead-
ing term of each harmonic. The second order
term in the variation of the mean pressure will be
estimated separately. We will assume open func-
tions of the distance coordinate for the coefficients
of each harmonic term of the series and show that
the expansion is valid for moderate values of the
initial pressure excess. It is obvious that these
distance dependent coefficients must be the
solutions of second-order differential equations
in order to provide two sets of adjustable con-
stants to satisfy the boundary conditions at the
two ends of the tube. However, by considering
the solution for an infinite tube (for which only
one set of boundary conditions is required) we
shall be able to discuss the question of convergence
of the solutions.

For the purposes in view, it will turn out to be
convenient to derive the equations on a density
basis. Density and pressure are, of course, re-
lated through the equation of condition.
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For gases, we start from

A (P ^P\=<& <>P. (38)

By algebraic manipulation, in which eq 19 and
20 are used to eliminate viscosity and pressure, we
obtain

brj\__\T0 brj

or (59)

dV__2Xro &5
bx2 U bt'

a nonlinear partial differential equation.
Assume as solution for the density ratio

(60)

where rj t is the fractional density amplitude ratio
of each harmonic (functions of x).

At the moment assume that the applied pressure
wave has all the mathematical properties necessary
to make the Fourier expansion of eq 60 valid. We
will discuss this point again.

When eq 60 is substituted in eq 59 and the
coefficients of like terms in the respective har-
monics equated, the following system of differential
equations result for the coefficients rjt.

, Vl==2

\ ~ Z / V2==2dx2

«/^Y 1 d2

The coefficient i70(=l) has been added for com-
pleteness.

From eq 61 it can be shown that the coefficients
rji for an infinite tube are equal to

The solution of these equations consists of a
complementary part that introduces two new con-
stants for each coefficient rjiy and a particular
solution that depends upon the solutions for co-
efficients with lower values of i. The latter part
represents the excitation of higher sum frequency
modes.

Detailed investigation of the convergence of the
solutions for the various coefficients leads to the
following conclusions:

The differential equations of eq 61 will admit
physically admissible and convergent solutions for
any bounded periodic pressure or density wave
at the origin because (1) either the wave at the
origin has a derivative that is of limited variation,
in which case the solution of eq 59 in series (eq 60)
is always valid; or (2) if it does not, spatial
attenuation of viscous waves occurs so rapidly
for higher harmonics that the wave will have a
derivative of limited variation at a short distance
beyond the origin, so that as far as effects down-
stream are concerned, the given input wave can
be replaced at the origin by a similar looking
function (i. e., a finite polynomial instead of an
infinite Fourier series) whose derivative is of
limited variation. As illustrations, we can replace
a square wave by its first few harmonics, or a
Weierstrass function by a smooth integrable
function. In simpler language this means that
in a viscous transmission tube, detailed or sharp
wiggles in the initial disturbance (high harmonics)
are not transmitted.

The more practical question as to the rapidity
of convergence of the series solution for the
attenuation of a given entrance disturbance can
be answered approximately by recourse to the
solution for an infinite tube, for which only one
set of boundary conditions must be satisfied.

+

( lX0+lX2[i-2]1 '2)
(62)
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where

(63)

Here vt is the constant of integration for the com-
plementary solution of each Vi, and y is a dimen-
sionless distance variable.

Substituting the value of the coefficients from
eq 62 into eq 60, we obtain the result that, if at the
origin (y—0), the density is written in the form

V\Vi
( V2 —

( 7?3 —

1XO+1X2[1]1/2

1XO+1X2[2]1'2

(64)

at any other point y, the density wave will be

Tj2je2jm-

\
K65)

(1XO + 1X2[1]1/2)(2X

Our previous conclusion permits us to assume
that expression 64 is manageable (i. e., of limited
variation with a time derivative of limited varia-
tion) so that it must converge. We may therefore
infer the following relations:

For large enough i

o<

Vi+l

Vi

<

o<

Vi

Vi

<
=

Vi+l

Vi

— y_

Vi

Vi
Vi

rjt _y[i]w

Vi

(66)

The last line in eq 66 contains our desired con-
clusion. We can infer from it the maximum num-
ber of terms that must be carried along in order to
know the distortion to within any desired ac-
curacy. If we assume, for example, that we are
interested in only those harmonics whose content
at the end of the tube is greater than 1 percent of
the applied first harmonic, we can neglect all
harmonics greater than the one for which

or

=0.01.

(67)

For most practical problems, it can be shown
that adequate information can be obtained from
a knowledge of the first and second harmonic, and
rarely, the third harmonic.

To compute the harmonic distortion for a
volume terminated tube, we go back to eq 61.
The solution for the density wave becomes

V=l+(v1+ey+V1_e-v)ejwt+

fc (68)

Here ^+, Vi- represent the two sets of integra-
tion constants necessary to take care of an out-
going and reflected wave in the tube. They are
fractional density excesses.

We will consider the boundary conditions to be,
for the moment, at x=0 (y=0)

+ . . . (69)
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where Vi is the amplitude of each input harmonic
in the density wave (it differs from viy which
represents both the input harmonic and the excita-
tion amplitudes of that harmonic), and at

~

x=L (y=

7 7 — = - ^ y — (70)

(see eq 1, 19, 20, and 24).
The application of these two boundary condi-

tions leads to the result that at the end of the tube

sinh oJ

V

Vi

'Pl^Vro cosh [2]1<2tT0+2tI0 sinh [2]1/2i^o

[2]lf2*To* (cosh 2 ^ o - [2]1/Vro)+2^roV/o([2]1/2 sinh 2^o-sinh [2]^
(cosh 2\pTo—cosh [2]\l/T0)

WTO) J2([2]1'Vro cosh [2]1/Vro+2^o sinh [2}ll2^m) (tT0 cosh ^o+tf'/o sinh
This result is for a given input density wave. pressure wave is given by

It will be shown later that the results shown in
eq 71 are only valid when the equation of condi- i;=!;oeJwt~\~£ie2jcct-\~ * * •
tion is isothermal (i. e. the "polytropic" coefficient
is unity). It therefore follows that if the input the wave at the end of the tube is

(71)

(72)

>0 &T0 c o s h sinh \//TQ [2]1/2^ro cosh [2]1' sinh

For liquids, we can start from eq 38

_&_/P_ d|A__ 32 dp
d#\/z c)x/ D2 i)t

B y the use of eq 22 a n d 23, we ob ta in

da:2 d~*'
where

AL
=1T

(38)

(59)

(55)

(73)

of the square of the amplitude of the fundamental-
I t can be simply shown tha t the increase in mean
pressure a t the instrument is given by

The equation is exactly the same as before with
the single modification tha t 1/6 is substi tuted for
n and m, so tha t our previous result (eq 73) holds.

The change in mean density along the tube can
be estimated from eq 59 and 70. The equation
of motion (eq 59) requires tha t the second deriva-
tive of the mean square density vanishes, or tha t
the first derivative is constant. However, the
end boundary condition (eq 70) requires tha t the
first derivative of the mean square density van-
ishes a t the end of the tube, and therefore along
the entire tube, so tha t the mean square density
and therefore the mean square pressure mus t
remain constant along the tube. The leading
par t of the second order change in mean pressure
arises, therefore, from the steady s ta te portion

4. Theory Corrected for Acceleration

In this section, we will remove the main re-
strictive assumption—the assumed Poiseuille ve-
locity distribution. I n order to do this, it is
necessary to go back to the equations of hydro-
dynamics. Since the complete theory is too ex-
tensive to be treated in this paper, we will simply
state the results.

I t is possible to take the Navier-Stokes equa-
tions of hydrodynamics (the equations of mo-
tion), combine them with the equation of conti-
nuity, and with the energy equation, which repre-
sents a detailed energy balance among thermal
and kinetic energies, to arrive a t the Kirchoff
equations of sound. (See Rayleigh, Theory of
sound, volume 2, article 348.) These equations
are valid to first order. This procedure was fol-
lowed, making no assumption as to the form of
equation of state for the fluid, and the following
results were obtained for the at tenuat ion param-
eter, and the velocity in an infinite tube :
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D
9 ^ ^o l g IT

1 —
2JAh%

(74)

where

r-=(l-*) -I

and

^ ' (75)

where
C is the Laplacian velocity of sound in the

fluid;
g and h are arguments of the Bessel functions for

unit tube radius;
Jo and Ji are the zeroth and first order Bessel func-

tions;
(T0 is the mean Prandtl number of the fluid

i£o is the mean thermal conductivity of the
fluid;

CP0 is the mean specific heat at constant pres-
sure of the fluid;

v0 is the kinematic viscosity of the fluid

\ Po/

C2D2

x / i

}2J\2j

1 + -

We may regard eq 78 as an extended definition
of the attenuation parameter ypT, and as the
modified velocity that replaces Poiseuilles law.
It is therefore used without the zero subscript,
which is used to denote the Poiseuille regime.

If we now bring in the end boundary condition,
namely

Attenuation of Pressure in Tubes

The attenuation parameter in eq 74 is to be
interpreted as before (see eq 47) as the exponent

in the form e T L

Equal 64 and 65 are of doubtful value for

CD (76)

or

These restrictions are violated at high vacuum
or very high frequencies.

It is instructive to evaluate eq 74 and 75 for
small values of the Bessel function arguments.
They become

2_32jq?Fo7
"~ C2D2

Q=z TTD4 dp
v 128MO bx.

(77)

which are precisely the results assumed in eq 1
and 42 under the condition in eq 42 that the
"polytropic" coefficient is unity. This arises
because the value C2/y in eq 77 is the square of
the Newtonian velocity of sound, which for gases
is Po/po- Eq 74 and 75, which take into account
the heat conduction, thus demonstrate that, when
the previous results are valid, the equation of
condition is the isothermal. At higher frequen-
cies the modifying term in eq 74 may be regarded
as the "polytropic" coefficient. To bring this
out explicitly, eq 74 and 75 may be written as

dp
128/IQ

'2j
D

' 2"'

1

(78)

^ 5 2
mp0 at'

for a gas, or

(24)

(25)
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for a liquid, we obtain

= j
dx irD*mp0 2J,

••(*§) _ _ _ -i

(79)

for a gas, or

dx

for a liquid.
Let

(80)

X r =
128/xpFcoL

(81)

for a gas, or

2J,U£
(82)

for a liquid.
We have thus corresponding extensions of our

definition of xi to cover all frequencies. The
limiting value of xi for small arguments obviously
becomes the previous value for x/o-

Since the only modification has been to extend
the definitions of fa and ^7 without changing the
form of the equations to be solved (namely eq
42 and 46), the previous result (eq 49) is strictly
valid. The results however are now correct for
frequencies well into the audio range.

It is not possible to use the results of this section
to extend the range of validity of the calculated
distortion for finite pressure amplitudes. To do
this rigorously would require going back to the
second-order terms neglected in Kirchoff's equa-
tions, which is an extremely arduous procedure.

It must therefore be concluded that the distortion
calculated in section (3) is valid whenever the
Poiseuille regime holds, which also means that
the "polytropic" coefficient in the distortion must
be taken as unity. The distortion may be validly
calculated from eq 73 when

^ < 1 , (83)

and when the applied pressure amplitude is
sufficiently small at the applied frequency (suf-
ficiently small enough Reynolds number) to per-
mit laminar flow.

5. Theory Corrected for Finite Length-End Effects

There is one additional factor that must be con-
sidered for completeness—the end effect. An
estimate of its magnitude will be made for the
Poiseuille regime. It arises from the fact that it
takes an appreciable length of tubing to set up
the Poiseuille velocity distribution in the trans-
mission tube. The character of the entrance flow
is that the axial velocity is flat at the entrance,
gradually developing an approximately parabolic
(laminar) boundary with a core of uniform veloc-
ity, until the approximately parabolic distribution
fills the tube. It is evident that boundary layer
theory may be used, and for our purposes an ex-
tremely crude boundary layer theory.

We go back to the equations of hydrodynamics
and make the following assumptions: (1) that the
entrance flow is incompressible, (2) that the varia-
tion of pressure in the radial direction is negligible
in the entrance portion, (3) that quadratic terms
in velocity are negligible in the boundary layer,
(4) that the core of the velocity distribution is
potential.

For our purposes we need only write the equa-
tions of motion for the potential core as

where uP is the axial velocity in the potential core.
Let

uP=^ (85)

where <j> is the velocity potential
then

or (86)
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where/(f) is an arbitrary function of time.
Eq (86) represents the Bernoulli integral,

can be written in the form
It

p(x, t) + b<l>(x, t)
(87)

The boundary conditions are a prescribed pres-
sure variation at x=0, the entrance, with a flat
velocity profile (uP=u where u is the average
velocity across the section) and a parabolic dis-
tribution of velocity at some point x=l down-

The assumption of incompres-stream ( -£-==

sible flow makes u the same at both sections,
these conditions lead to the result that

(88)

If we now refer to the arguments given in Gold-
stein "Modern Developments in Fluid Mechanics/'
vol. 1, pp 299 to 308 for the static case, we find
on p. 302 that

(89)

where Re is the Reynolds number.
It follows from these two equations that the

leading term for the entrance loss in the oscillatory
case is the usual pQu2 loss.

We may therefore adopt the exact static result
(see p. 308 of Goldstein) that

jf/TQ cosh ^ro+^/o sinh î T

'^o([l+iV"2] cosh 2fT0-.
sinh [211/2<J

[2]1'V

t) =p(l, t) +2.41 (90)

~2B'

where the last term represents the Poiseuille vis-
cous resistance.

Therefore the effect of the entrance is to cause
a pressure drop given by

Ap = pQwi, (91)

the exact coefficient 1.2 being unimportant for
our purposes. We will regard eq 91, not as being
exact, but as indicating the order of magnitude
of the entrance correction.

If we substitute the Poiseuille velocity into eq
(91) and evaluate the pressure gradient of the
Poiseuille distribution from eq (47), we arrive at
the result that the pressure excess just inside the
tube f1 is approximately given by

(92)

Equation 92 is the desired result. It shows
that the approximate effect of the entrance is to
distort each input harmonic. It can be inter-
preted as meaning that the effect of the entrance is
the same as if it did not exist, but with the funda-
mental harmonic generator replaced by a funda-
mental and a second harmonic generator. The first-
order terms are thus left unaffected, and the only
equation requiring modification is the attenuated
second harmonic.

If eq 92 is used as the input pressure for a pure
sinusoidal input in the fluid conduit, eq 73 becomes

cosh o sinh [2]1'

-iV2] sinh 2 ^ T 0 -
-iV2] cosh 2^ r 0-iV2-cosh

) cosh i/To+tio sinh \l/T0)
2 i]

(93)

where

"32

N is a dimensionless parameter.

(94)

The second term in eq 93 gives the second
harmonic distortion.

Attenuation of Pressure in Tubes

Actually from the condition under which eq 93
is valid (namely eq 83), the value of N2 must be
small, so that it is a matter of indifference whether
it is used in eq 93 or not, and we will therefore
neglect it.

6. Summary

There only remains the task of recapitulating
the pertinent results and presenting them for
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computational convenience. To accomplish this
some minor notational changes will be made.

In eq 49, it was shown that the complex attenu-
ation of the fundamental is given by

S°L= YL : (95)
£o &T cosh ^r+^z, smh 4^T

where %OL is the complex amplitude of the frac-

tional pressure excess of the fundamental at the
end of the tube, and the subscript 0 refers to the
fundamental.

In eq 93, it was shown that the complex ampli-
tude of the second harmonic distortion due to a
pure sinusoidal pressure input is given in the form
of its ratio to the input amplitude of the funda-
mental by

Uo/o~[2]1 / 3
'hi.\ _ Lsinh

sinh ifoj

where \IL is the complex amplitude of the frac-
tional pressure excess of the second harmonic at
the end of the tube; \l/T0 and \l/I0 are the values of
the attenuation parameter computed on the basis
of the Poiseuille velocity distribution.

In eq 76, it was shown that eq 95 is valid if

CD
(97)

In eq 83, it was shown that eq 96 is valid if

(98)

In eq 48, the attenuation parameters were de-
fined as

$T2=JXTT2=JXT)

=JXi )
(99)

In eq 78, 81, and 82, with slight modifications
for generality, the attenuation factors were deter-
mined to be most generally

cosh [2]1'2tT0+2fI0 s i n h t ^

1 + -

] (96)

D

2
D X

V

2 J , A^

D

^ (100)

— 1

while the attenuation factors for Poiseuille flow
are

X/o

_32yo<o / i V

O2VQ03 / j L \ V

AL

(101)
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From eq 75

11/2

(102) Fi

Here CT is the velocity of sound appropriate to the
tube;

Ci is the velocity of sound appropriate to the
instrument volume.

For computational purposes, the attenuation
factors can be made less complicated by the
introduction of two new functions.
Let

1 +
2(T-l)Ji(<7f)

D

D
I" "2 \ *.

(103)
and

DD

where î i and F2 are correction functions to the
Poiseuille attenuation factors.

The attenuation factors then become

D) \AL ( 1 0 4 )

In order to obtain consistency with our previous
results, we introduce the following definitions:
For a gas:

It can be shown both from kinetic theory and
from experimental data that the value of the
Prandtl number for a gas is approximately unity.
Differences from unity are unimportant for our
purposes Therefore g and h in eq (102) may be
regarded as equal. We may therefore define
Fx and F2 as

1+- D T (VD

hJh
- 1

•(»!-)-

2J,•(*?)
hD T(hD\

(105)

These functions therefore depend only on two
variables, instead of three as in eq (103).

Equation 78 shows that the velocity of sound
appropriate to the tube for eq 104 is the Newtonian
velocity, which for a gas is [po/po\y\ Equation 81
indicates that the velocity of sound appropriate
to the instrument volume for eq 104 is the "poly-
tropic" velocity or [mpo/po]

H. Therefore for a gas,
the attenuation factors may be computed from

where Fu F2, and A^may be computed from

eq 102 and 105.

It is convenient to utilize one more variable,
the ratio XI/XT, which from eq 106 has the value

xr 1 V w A D

For a liquid:
It has been stated that y can be satisfactorily

taken as unity for a liquid. This similarly makes
the functions Fx and F2 (see eq. 103) independent
of g (or really of the Prandtl number). In that
case, the definition of Fi and F2 for a gas (eq.
105) holds for a liquid, if y is taken as unity.
Continuity of definition is thus provided for both
liquid and gas attenuation.

Equation 78 shows that the velocity of sound
appropriate to the tube for eq 104 is the Newtonian
velocity of sound. However, consistent with eq.
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55 and 58, the Newtonian velocity must be based
on the effective compressibility of the liquid and
tube. From eq 82 it is seen that the velocity of
sound appropriate to the instrument volume,
however, is based on the real compressibility of
the fluid (the difference between adiabatic,
" poly tropic/' and isothermal compressibilities is
assumed negligible). It has been assumed that
the compressibility of the instrument volume is
included in the definition of the effective instru-
ment volume. It follows therefore that the
attenuation factors for a liquid can be computed
from

and

O-Pa J_D\

X/o = ( 2J ) 3X
(109)

Xi

It is now possible to compute the real attenua-
tion and lagging phase angle for the first and
second harmonics. If the attenuation parameters
in eq 95 are regarded as the low frequency param-
eters based on the Poiseuille distribution (i. e. the
ones with zero subscripts), then the real attenua-
tion and lagging phase angle can be computed
from

(108)

cosh [2Xro]
1/2+COS [2xro]1 /2+(?)[2Xro]1 /2(sinh [2Xro]1/2-

sin [2xro]
1/2) + f j 5 L

\Xro
n/2_ COS [Xro]1/2)

tanh ^
(tan S0)o—- TJ

(110)

The zero subscript means that these are the
values for the Poiseuille flow regime. Graphs of
these equations are quite useful for computing
attenuation. Since %TO is proportional to fre-
quency (see eq 101), while x/o/xro is proportional
to the ratio of instrument volume to line volume
(see eq 107), a family of curves of attenuation or
phase angle plotted against XTO for different values
of XIO/XTO are frequency response curves for
different volume ratios. These curves are pre-
sented as figures 2 and 3.

At higher frequencies, where the functions F\
and F2 take on values appreciably different from
unity, the expressions become extremely com-
plicated. It is therefore of utility to examine
their high frequency behavior.

At high frequency, we will use the approxi-
mation

2«71(y)=rl 2j
yJaiy) y2 y

(in)

If we define a new parameter z (related to h 4-),

which characterizes the fluid regime, as

D2w
Z~—A ;

a frequency parameter wL/C, where

and a volume ratio R defined as

R=y
XTO

(112)

(113)

(114)

it can be shown that at high frequency
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(
1+COS —ft

tan bo=Lie j

2coL
— cos —p-)T

2 >- coi

(115)

This is the solution for the undamped acoustic
resonance of a tube and instrument.

In computing these quantities in eq 115, it is
assumed that XTO is smaller than XTO %a, or that
XTO is small compared to coL/C. In the solution for
the undamped case, the phase angle lag is usually
regarded as zero up to the first resonance. How-
ever, the given expression permits first-order com-
putation of the phase angle lag valid for values of
XTO small compared to <aL/C, even though the
overshoot is given as undamped. Practically, this

~T7p~

or less.
These quantities are presented in figures 6 and

7. It can be shown that they are valid for values

means for values of of the order of one

of z> 100, whereas the low frequency curves (figs.
2 and 3) are valid for z<\ (see eq 98). We will
state without proof that the parameter z, which
characterizes the flow regime, is closely related to
a damping coefficient. Figures 2 and 3 will
therefore be referred to as the large damping
curves, and figures 6 and 7 will be referred to as
the undamped curves.

Unfortunately, in many instances, a knowledge
of the highly damped behavior (figs. 2 and 3) and
the undamped behavior is not sufficient. Curves
have therefore been drawn for a value of z about
"half-way" between 1 and 100, namely 2=6.25
(see figs. 4 and 5). In order to preserve a scale
proportional to frequency, the quantity XTO is
used as abscissa.

These curves were computed from the formulas

-ocosh 2ci + cos^2c2+2c3 sinh 2cx — 2c4 sin 2c2+ (C3+C4) (cosh 2^—cos 2c2)T
tan 0oz= tanh Ci tan c2+c3 tan c2+c4 tanh

7—i 7
tanh Ci—c4 tan c2

(116)

where

c3=(cos c,[l-8in

c4=(cos cjl+sin

-6in c6[l+sin

-ain c,[l-sin

g \Ft\

J
^ \Fj\l" ^ \F2\

COS Cg=fS-i
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/a
COS C6 = fw,

1̂

sin c6=

Equation 116 is valid at all frequencies, and is distortion at low frequencies (neglecting the end
presented without further explanation for com- effect) are presented in figures 8 and 9. The for-
pleteness and the use of those with great compu- mula used in their computation was
tational fortitude.

The amplitude ratio and leading phase angle
(angle of lead on the time scale of the fundamental
where both the fundamental and double frequency
waves are cosine terms) of the double frequency where

Cl = COsh [2xro]1/2 COS [2xro]1/2-COsh [x™]1/2 COS [XroF+J^ [Xro]1/2([2]1/2 sinh [2Xro]1/2 COS [2Xro]1/2-
XTO

[2]1'2 cosh [2xro]1/2 sin [2Xro]1/2-sinh [Xro]1/2 cos [Xro]1 /2+cosh [Xro]1/2 sin. [Xro]1/2)+

( — Y Xro(-sinh [2Xro]1/2 sin [2Xro]1/2+sinh [Xro]1/2 sin [Xro]1/2)

c2=sinh [2Xro]1/2 sin [2X r o]1 / 2-sinh [Xro]1/2 sin [Xro]1/2+— [xro]1/2([2]1/2sinh [2Xro]1/2cos [2Xro]1/2+
XTO

[2]1'2 cosh [2Xro]1/2 sin [2Xro]1/2-sinh [x,o]I/2 cos [X70]1/2-cosh [Xio]1/2 sin [x,o]1/2) +

T ^ Y Xro (cosh [2Xro]1/2 COS [2Xro]1/2-COsh [xro]1/2 COS [Xro]1/2)

^ [Xro]1/2(sinh [Xro]1/2 COS [Xr0]1/2-COsh [Xro]1/2 sin [Xro]
I/2)

Xro
C3 = COsh [ X r o ] 1 / 2 COS

C4=sinh tX r o]1 / 2 sin [
XTO

[xro]1/2(sinh [Xro]1/2 cos [Xro]1/2+cosh [Xro]1/2 sin [Xro]1/2)
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